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Abstract 

Differential Games for pursuit evasion problems have been investigated for many years. Differential 

games, with linear state equations and quadratic cost functions, are called Linear Quadratic 

Differential Game (LQDG). In these games, one defines two players a pursuer and an evader, where 

the former aims to minimize and the latter aims to maximize the same cost function (zero-sum games). 

The main advantage in using the LQDG formulation is that one gets Proportional Navigation (PN) 

like solutions with continuous control functions. One approach which plays a main role in the LQDG 

literature is Disturbance Attenuation (DA), whereby target maneuvers and measurement error are 

considered as external disturbances. In this approach, a general representation of the input-output 

relationship between disturbances and output performance measure is the DA function (or 

ratio).  This function is bounded by the control. This work revisits and elaborates upon this 

approach.  We introduce the equivalence between two main implementations of the DA control. We 

then study a representative case, a “Simple Boat Guidance Problem” (SBGP), with perfect and 

imperfect information patterns. By the derivation of the analytical solution for this game, and by 

running some numerical simulations, we develop the optimal solution based on the critical values of 

the DA ratio. Finally, we study a representative Missile Guidance Engagement (MGE) problem. The 

qualitative and quantitative properties of the MGE solution, based on the critical DA ratio, are studied 

by extensive numerical simulations, and are shown to be different than the fixed DA ratio solutions. 

 

1. Introduction  

Pursuit-evasion differential games have attracted a considerable attention since the seminal works of [1] and 

[2]. A class of differential games, with a couple of players driving linear state equations both affecting a 

quadratic cost function, are called Linear Quadratic Differential Game (LQDG).  In these games, where the 

pursuer tries to minimize a quadratic cost function, whereas the evader tries to maximize the same cost 

function (i.e., these are zero-sum games). The cost function includes weights the squared miss-distance, the 

control efforts of both players, as well as occasionally trajectory shaping terms. The main LQDG formulation 

allows derivation of popular guidance laws such as Proportional Navigation (PN), Optimal Rendezvous (OR) 

and so on. A problem which is closely related to the LQDG problem is the one of Disturbance Attenuation 
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(DA), where pursuer actions are considered to be control actions, whereas all external actions such as target 

maneuvers and measurement errors, are considered to be disturbances. In fact, the DA problem is just one 

side of the double inequality forming the saddle-point relation and leads to the H   problem. DA problems 

can be either deal with perfect information patterns where both pursuer and evader share a perfect 

information regarding the full state-vector and their both actions or imperfect information where both players 

have access only to noisy measurements of a linear combination or part of the state-vector. The present paper, 

revisits DA problems in the latter case, and provides detailed analysis of simple pursuit-evasion examples 

which allow insight to the interplay between the control and estimation parts of the pursuer strategy.   

We firstly introduce the equivalence between two main implementations of the DA control, one formulated 

by Speyer [1] and the other by Limbeer [2]. Secondly, we introduce and discuss a representative case study 

of a Simple Boat Guidance Problem (SBGP), with perfect and imperfect information patterns. We derive the 

optimal solution, and present numerical results, for the SBGP using critical and non-critical values of the 

DA. We then introduce another representative case study, concerning Missile Guidance Engagement (MGE). 

The qualitative and quantitative properties of the MGE solution, based on the critical and non-critical DA 

values, were studied by extensive numerical simulations. 

One main interesting result can be found in [5]-[6]. A case study for MGE with jamming power was 

introduced [Figure 1]. The Navigation Constant (connecting line-of-sight rate with the acceleration’s 

command) grows with the jamming magnitude (in fact, it grows when the cost imposed on the noise in the 

game is reduced). This result is somewhat counter-intuitive. For example, in another case study [7] 

Navigation Constant gets lower as the disturbances grows. The present paper clarifies this result as well.   

 

Figure 1- Navigation Constant vs. Jamming power [J.L Speyer] 
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2. The Equivalence between Two Implementations of the Pursuer Strategy 

Consider the following system as can be found also in [3], [8]: 

   

 

 

1 2 0

2 21

1 12

, 0 2.1

2.2

2.3

x Ax B w B u x x

y C x D w

z C x D u

   

 

 

 

Where nx is the state vector, qw is an exogenous disturbance, su is the control input signal, 

0x  is an unknown initial state, ry is the measurement output. The matrices 
1 2 1 2 12 21, , , , . ,A B B C C D D  

are constant matrices of the appropriate dimensions. 

 21 2 21 21 12 1 12 120 0 2.4T T T TD B D D I D C D D I     

Consider also the following cost function  

       1 2

0 0 0
0

2.5
ftT T T T

f f fJ x t X x t x Y x z z w w dt     

Which is to be respectively minimized and maximized by u andw . In connection with the Linear 

Quadratic Differential Game (LQDG) problem, the following couple of modified Differential Riccati 

Equations (DRE) plays important role: 

 

 

2 1 1

1 1 1

ˆ 2.6

ˆ 2.7

T T

T T

X A X XA C C

Y A Y YA B B

   

  
 

Where: 

 

 

2

1 2 2

2

1

2

1 2 2

1

1

ˆ 2.8

ˆ 2.9

T

T

T

T

YC C

SB

A A YC C

A A X B B XB











 


 

Also a third DRE, the solution of which Z  is known to be related to those two, by 

   2
1

2.10YXZ I Y


   

The LQDG literature presents the following solution to the above measurement feedback problem where 

w  can take any full information strategy (i.e. with access to x  ) where u  has access only to noisy 

measurement y .  

The following solution has been found in [3]: 
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 

 

1 1 1 1

1 1

ˆ ˆ 2.11

ˆ 2.12

x A x B y

u C x

 


 

Where:  

   

 

   

1
2

1 2 2

1 2

1
2

1 2

ˆ 2.13

2.14

2.15

T

T

T

A A B B X I YX

B YC

C B X I YX











  



  

 

Another solution appears in [4] which generally serves the control community:  

 

 

2 2 2 2

2 2

ˆ ˆ 2.16

ˆ 2.17

x A x B y

u C x

 


 

Where: 

 

 

 

2 2

2 2

2

2

2

2
ˆ 2.18

2.19

2.20

T

T

T

ZC C

Z

A A

B C

C B X







 

 

In [3] the two solutions have been shown to coincide in the steady-state time-invariant case. Our aim is to 

show that, as could be expected, the solutions are equivalent. We use here a somewhat different approach 

which applies a similarity transformation between those two implementations.  

To this end, consider 0T   , so that: 

 1

2 1
ˆ ˆ 2.21x T x  

We readily obtain using the following identity,  2.22 , that the two implementations are equivalent. 

 
1

1 1 2.22
dT

T TT
dt


    

Therefore, 0T   s.t: 

 

 

 

1 1

1 2

1 2

1

1 2

2.23

2.24

2.25

A TA T TT

B TB

C C T

 



 




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We next intend to show that 2 XI YT    satisfies the above relation. Indeed, 

   1

1 2 2

1
2 2.26T YC B X I C TX


      

Similarly,   

   1 2 2

2

2 2 2.27T T TB YC TZC I ZX CY TB       

It, therefore, remains to establish the relation between 
1A and

2A . To this end, note that using the above 

definition of T we have: 

 

 

1

1 1 2 2

2 2 2 2

ˆ 2.28

ˆ 2.29

T

T

A A B B XT

A A ZC C

 

 
 

From  2.23  we have to show that: 

 1 2 2.30AT TA T   

In other words, 

 1 22 2 22
ˆ ˆ 2.31T TAT B B X T Y TA C C    

Where we have used the relationTZ Y . 

The expression for transformation derivative is given by: 

 2 2 2.32Y YT X X      

Substitute  2.32  in  2.31  and using the DRE’s of    2.6 , 2.7  yield the following: 

   

   

2

2 2

2

1 1 1

2 1

2 2

1 2 2

2.33

2.

ˆ

ˆ 34

T T

T T T

TY X B B X

R Y Y YX Y

L A B B YA

A X C C A X C C X



  



  

  





     
 

Finally, substitute 1Â  , 2Â and collecting terms, we readily find that L R  as required, completing the 

proof of similarity based equivalence.    

Note: One may choose the initial condition, and use a trivial transformation between the two 

implementations, in order to achieve this equivalency.    

As a result, we can see easily the equivalence between the two controls:  
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   

 

 

 

   

 

1

1 1 1 2 1

2 2 2 2 2

1

2 1

1
1

2 2 1 2

2

2

2

1

1 2

ˆ ˆ 2.39

ˆ ˆ 2.40

ˆ ˆ 2.41

2.42

ˆ ˆ 2.43

2.44

T

T

T T

u C x B X I X x

u C x B Xx

x T x

T I X

u B XT x B

Y

Y

YX I X x

u u




















   

  



 

    


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3. Special Case-The Simple Boat Guidance Problem (SBGP) 

Consider two boats, A and B, where A (the pursuer) wants to hit boat B (the evader). In order to accomplish 

this mission, boat A controls it’s heading angle , trying to navigate toward boat B. On the other hand, boat 

B tries to evade from boat A, and does that by controlling the heading angle .  

Assumptions: 

 Two dimensional problem. 

 The boats have constant velocities: 
AV and

BV . 

 Boat A is faster than Boat B: 
A BV V . 

 The boats have a direct control over their heading angles  and   , also 1, 1   

 

Figure 2-The SBGP Geometry Description 

 

The equations of motion are: 

   

 

 

0 0 3.1

sin 3.2sin

3.3

B A

B AV w u

z x

x

x V

v

Y Y x

 

 

  

 

 

Where 1x is the “relative separation”, 1z  is the measurement and 
1v  is the additive noise. We 

can formulate the problem as “Min-Max problem”, where boat A aims to minimize the relative separation 

at the terminal time, whereas boat B wants to maximize it. 
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3.1 Optimal Solution- Perfect Information Game 

Consider first the perfect information game- where there is no measurement noise. From  3.2  and  2.6

we get: 

 

          

         

2 2 2 2

0

2 2

3.4

1
min max , 3.5

2 2

1 3.6

ft

f
u w

f

x w u

b
J u w x t u t w t dt

X t X t X t b



 

 

  

  

  

The optimal strategies are given by [10]: 

       

       

 
  

 

*

*

2

2

3.7

3.8

1
3.9

1 1/f

u t X t x t

t X t x t

X t
t t

w

b









 


  

  

Where 1  guarantees a Positive Definite  X t t ; 

One gets the linear control feedbacks (player’s strategies): 

 
  

   

 
  

   

2

*

*

2

2

1
3.10

1 1/

1
3.11

1 1/

f

f

u t x t
t t b

t x t
t t b

w












 
 





  

Note that by letting ,b    , we get a simple Collision Course Guidance (CCG) Law: 

 
 

   

   *

* 1
3.12

0 3.13

f

w

t t
t t

t

u x



 

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3.2 Optimal Solution- Imperfect Information Game   

Consider imperfect information such that there is noise, v , added to our measurements. From  2.5  we get   

        

 

 

0

1 2 2 2 22 2 1 2

0 0

1 1 1
max min 3.14

2 2 2

3.15

3.16

ft

f
uw

t

J Y x t bx t u w V v dt

x u w

z x v

       

 

 



 

Notice that we have added a weight 1V  to the quadratic term of v  (in Eq.  2.5 the noise was normalized 

by 1V  ).   From  2.12  and  2.15 , the pursuer optimal control is given by: 

 

   

*

2 2

2

2

1

ˆ 3

,

.17
1

1
, , 3.18

1

X
u x

YX

X
t Y X

YX X Y




 



  

 


   
 

 

Where: 

   

   

 
  

 

2

2

2

3.19

1 3.20

1
3.21

1 1/

f

f

X t b

X X

X t
t t b









 


  

 

 Y t is the solution of:   

 1 3.22T T TY AY YA DWD YH V HY     

Where:  

 0, 1, 1 3.23A D H    

DRE for Y  can be written simplicity as: 

   2 1

00 3.24Y W Y V Y Y    

The steady state value is given by: 

 2 1 20 3.25W Y V Y WV     
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Let:  

 1 3.33W   

The RDE is reduced to 

   2 1

01 0 3.34Y Y V Y Y    

Where the solution can be found in [9]: 

   2

0

0

2
3.35

1

t

V

V
Y t V

Y V
e

Y V

 





 

One can notice that in the steady state, ssY V  . This result coincides with the Linear Kalman Filter 

(LKF) solution. Finally, the gain is given by: 

 
  

 0

2 2 2

2

0

0

2 1
, , , , 3.36

2
1 1/

1

,f

f t

V

t t V b Y
V

t t b V
Y V

e
Y V

 



   


 

     





Where: 

   

     

*

0

1

ˆ ˆ 0 3.37

ˆ ˆ ˆ 3.38

u x x t

x t x YV z x

  

   

For optimality, we demand the following three conditions: 

1. Solution to DRE, 0Y  , exists 0 , ft t t    . 

2. Solution to DRE, 0X  , exists 0 , ft t t    . 

3. The Spectral Radius Condition (SRC): 21 0YX  
0 , ft t t    . 

For the described case, the SBGP, it results in the following inequalities: 
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    

 

    

2

2

0

0

2 2 2

2

0

0

1 1/ 0 3.39

2
0 3.40

1

2
1 1/ 0 3.41

1

f

t

V

f t

V

t t b

V
V

Y V
e

Y V

V
t t b V

Y V
e

Y V



  



  

   

 





      





 

The conditions can be summarized by the following expression: 

    2 2 2

2

0

0

2
1 1/ 0 3.42

1

f t

V

V
t t b V

Y V
e

Y V

          





 

From (3.41) we can get the lower bound for 2 as follow: 

 
   

 2

2

0

0

2 1
3.43

1/ 1 /
1

f

t

f fV

V t t V

b t t b t tY V
e

Y V


 

  
   



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4. Approximation using Steady State LKF (SBGP) 

Taking the steady state solution for Y: 

 4.1ssY V  

From that, one can approximate the expression of the gain to be as following: 

 
  

 2

2 2
,

1
, , , 4.2

1 1/
f

f

t t V b
t t b V 


 


 

   
 

In Figure 2, we run two simulations for the same scenario, one with the approximated gain and one with the 

exact gain. Simulation parameters: 22 2

050, 1 1, 50, 0b V Ym m         .. 

One can observe the fast convergence of the approximate to the exact gain.  

 

Figure 3- The Convergence in Order to Justify the Approximated Gain  

Now, we can investigate the approximate gain expression (4.2).Let 2

c  be the minimum value of 2  such 

that the solution to our problem exists, satisfying the three conditions of the last paragraph. 

 

The gain (4.2) must holds
0 , ft t t    . In particular for

ft t . By substituting  
ft  , the gain approaches 

to: 

   
2

1
4.4

1/
ft

b V 
  


 

In order to meet the third optimality condition (SRC), the following inequality must hold: 

 21/ 0 4.5b V    
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Notice that if (4.5) does not hold, we have a finite escape timein (4.3). From the last inequality we can get a 

lower bound for 2  : 

 2 4.6b V   

We got the critical value for the DA ratio: 

   2

1
4.7c b V  

From the second inequality we still have:  

   2

2
1 4.8c  

A generalization of the last two results yields: 

 2 max ,1c b V   

Under this approximation, let’s examine the gain behavior with respect to the noise magnitude. From 

exploring  4.4 , one can notice that as the noise magnitude gets higher, the difference between the positive 

and negative values in the denominator reduces. As a result, the gain grows. On the other hand, using the 

(approximate) critical value of the DA ratio, 2

c we get:  

  
 

1
4.10

1 1/ fb V t t
  

 
 

One can notice the opposite  behavior of the gain with the noise magnitude: as the noise magnitude gets 

higher, the gain gets lower. The optimal control and the estimate equation are given by: 

  
 

    

*

1

1
ˆ ˆ 4.11

1 1/

ˆ ˆ1 1/ 1 4.12

f

f

u x x
b V t t

x b V t t x z


   
 

          

We may consider the following two limit cases: 

 
 

* 1
lim lim 4.13
b V

ft t 
    


 

We get immediately that the last gains are equivalent to the perfect information case (CCG).  
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5. Numerical Results (SBGP) 

The SRC entails: 

     

     

     

     

2

2

min

2

min

2

1 5.1

1 5.2

0 1 0 5.3

5.4

c c c

c c c

c c c

Y t X t

Y t X t

Y t X t

Y t X t















  

   

     

 

 

In practice, it is not recommended to take the minimum value, and a safety margin from singularity should 

be considered. We choose
min 0.01  . To demonstrate the results, we run a simulation using a Gaussian 

White Noise (GWN) with two different values for the standard deviation . The value of V is adjusted to 

by 2V  . (This is based on the observation that  3.35  has the form of a standard LKF). The target 

performs a unit step maneuver:  3 /w m s . The weight of the terminal relative separation (the miss 

distance) is chosen to be 100b  .  

We examine two cases: the first with a fixed   and the second with a minimal  (up to
min 0.01  ). The 

results are given in the following figures. 

 

 

 

Figure 4- SBGP Gain for Critical DA Ratio  

 

Figure 5- SBGP Gain for Critical DA ratio, Zoom In 
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Figure 6- SBGP Gain for Fixed DA Ratio 

 
Figure 7- SBGP Gain for Fixed DA Ratio, Zoom In 

 

One can observe that, when the control is designed with a fixed value for  (the DA ratio), the gain grows 

as the noise level grows. However, when we consider the near-critical DA value, the gain is reduced as the 

noise level grows, which is the more intuitive result.  Moreover, a comparison between the DA control and 

the separated control is made (i.e. using the control  3.10 with the estimated x ). It appears that by using 

DA control we may achieve a lower miss-distance (up to 35%), especially with the near-critical DA values. 

The simulation was run with the following parameters: 

 

 

20.2

100

3 /

3f

m

b

w m s

t s

    







 

Monte-Carlo simulation with 1000 runs for the parameters above results in the result in the following table: 

 

Control  CEP m  2

EffE u m s       

DA, 6   0.70 48 

DA, 4.3c   0.57 114 

Separated , 6   0.76 47 

Separated , 4.3c   0.77 46 
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6. Missile Guidance Engagement (MGE) 

Assume a linearized model. The Target (T) and the Missile (M) dynamic are approximated with 1st order 

Autopilot systems. Following the geometry in Figure 8, a set of EOM as state space is presented for the 

guidance system that described below: 

 

Figure 8 MGE, Problem Geometry 

Define: 1x y . Where 
Tn  and 

Ma  are T and M accelerations perpendicular to LOS.  

 

1 1

2 2

1 1

1 1

0 1 0 0 0 0

0 0 1 1 0 0
6.1

0 0 0 0

0 0 0 0

T T

M M

x x

x x
u w

n n

a aT T

  

 

        
        


          
        
        

        

 

           

 

 

   

1 2

1

1

4 1

6.2

0 0 0 6.3

0 0 0 6.4

, , 6.5

T

T M

T

T

t x t x t n t a t

T

t









   

   

   



x

B

D

x B D

 

 4 4

1

1

0 1 0 0

0 0 1 1
6.6

0 0 0

0 0 0 T









 
 


  
 
 

 

A  

Where A (stationary) is the dynamic’s matrix. B,D are constant control vectors,  tx  is the states vector. 

           00 6.7t t t t x = Ax +Bu +Dw x x  

Assume imperfect information game. Hence, we don’t have full state information. The estimate state 

vector is given by:  

           1 2
ˆ ˆ ˆ ˆ ˆ 6.8

T

T Mt x t x t n t a t   x  
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The measurement equation:    

         6.9z t H t x t v t   

For this case, we measure only the LOS angle, , such that the observation vector H  is given by: 

     
1

0 0 0 6.10c goH t V t
 

  
 

Note that the expression for the LOS  rate    is derived according to Figure 8 and given by: 

 
 

 

1 1 1

1 22

6.11

1 1
6.12

c goc f

c go c go

x x x

R V tV t t

x x
V t V t





  


 

 

Considering the following General Performance Measure (GPM) equation:  

           6.13y t C t x t F t u t   

Now, Initial Conditions are unknown. The vectors 0, ,w v x  have the following weight matrices: 

         0 00, 0, 0 6.14T T TW t W t V t V t Y Y       

          
2 22

0 2 2
, ; , 6.15fJ u w t t y w       

where    0, ,
T

w t w v x . 

For simplicity, Let’s assume: 0Q   . The cost function explicitly is given by:  

   
0

2 1 2 1 1

0 0 0

1 1 1
6.16

2 2 2

ft

T T T T T

f f f

t

J x X x x Y x u u w W w v V v dt        
   

Where u  is the minimizer and 
0, ,w v x  are the maximizers.  

6.1 Optimal Pursuer (Missile) Strategy:  

   

   

 

1

1
* 2

1
2

*

ˆ 6.17

6.18

ˆ 6.19

T

T T

u B X I YX x

B X I YX B X

u x












  

    

 
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Where the estimate equation and the RDE’s are given by  

     

   

   

1

2

1

0 0

ˆ ˆ ˆ 6.20

6.21

, 6.22

T

T T T

T T T

x t Ax Bu YH V z Hx

X XA A X X BB D WD X

Y AY YA DWD YH V HY Y t Y









   

    

    

 

 

 

7. Numerical Results (MGE) 

Assume the following parameters: 

 

   

0 0 4

,0,0,0

300 / 7.1

0, , 3, 1000

f

c

X diag b

V m s

x Y I W b





   

 

We explore 3 cases for the MGE. Firstly we introduce the behavior of the Missile gain with fixed and critical 
DA ratio. Secondly, we introduce a comparison between the DA control, the Separation Control, the perfect 
state control and a well-known Guidance control -the PN. Lastly, we introduce the sensitivity of the control 
to flight- time by comparing the resultant miss-distance for the DA and the Separation control.   

 

7.1. DA Ratio (Fixed and Critical): 

 

Figure 9- MGE, N Constant for Critical DA Ratio 

 

 

Figure 10- MGE, N Constant for Fixed DA Ratio 
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7.2. Comparison between 4 Controls: 

Disturbances Attenuation Control:  
1

2

1
ˆTu B X I YX x 



    

Perfect State Control: 
2

Tu XxB   

Separation Control: 
3

ˆTu B xX   

Proportional Navigation Control:  4 2 1 2
ˆ ˆ

3
go

go

x t
t

xu    

 
 1..4

sgn

i i sat

i

sat i i sat

u u u
u i

u u u u

 
 

 

 

In order to examine the performance of the control we take the previous scenario and simulate again the 
engagements with two additional controls: the Separation Control and the Perfect State Control.  Noise 

Level is chosen to be  50 rad and 2.5  . Comparison is given below.    

 

Figure 11-MGE Control Comparison 

 

Control CEP  cm  EffE u  
2 3/m s    

1

1
ˆTu B S x   30 392 

2

Tu SxB   14 284 

3
ˆTu B xS   52 532 

 4 2 1 2
ˆ ˆ

3
go

go

x t
t

xu    
128 960 
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7.3. Robustness to Flight Time  

Consider that engagement duration isn’t fixed. In this case the influence of the Noise Level for some value 

of 
ft were checked. Additionally, comparison between the Separation control and the DA control was done.    

  3,15 sft   

 

Figure 12 MGE, Miss Distance as a Function of Engagement Duration  

 

One can notice that the DA control is much robust to change in 
ft  than the Separation control. Moreover, 

the miss-distance of the former is much higher.  
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8. Summary  

The problem of DA with imperfect information pattern has been revisited. First the equivalence between the 

two main DA control solution formulations was established for the finite-time horizon case. Then, two 

representative cases were introduced, with perfect and imperfect information. The detailed analysis of these 

two DA problems revealed the advantage of using the critical value of DA ratio over a fixed DA ratio. 

Although we focused in simple guidance problems, these problems seem to capture some of the main 

characteristics of problems of higher complexity. 
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Appendix A 

DA ratio as a function of time: 

    

     

     
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 

     
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2
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 

 
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