
1 | P a g e

Experimental Project
"Trajectory Panning for the

 TurtleBotII Robot"

Written by Barak Or,

Under the guidance of Professor Daniel Zelazo

November, 2015

2 | P a g e

Table of contents

Introduction 3

Summary report of TurtleBot2 hardware specification 4

XBOX short review 9

R.O.S short review 10

 Quick Guide to initialize the robot 11

Controlling the robot by using 'Matlab' 13

V.R.P- a private solution for 4 station case 15

V.R.P- a generic solution for N station case 21

Experiment by using 'TurtleBot' robot 28

3 | P a g e

Introduction

This document summarizes the work on the experiment project over the last

eight months, since April until these days.

My task at the beginning of the project was to study the robot "TurrtleBot2"

system, starting from zero: open boxes and assembly of the robot, writing

instructions to use for other users and assembly of units to other students. In

addition, I knew the R.O.S and worked with the robot through the 'Matlab'

environment, as detailed in this document.

Once I knew the system, I started working on the implementation of a known

problem- Vehicle Routing Problem (V.R.P) with a certain constraint. I assumed

assumptions that simplify the model and wrote an algorithm for solving the

problem. At first I wrote an algorithm specific to an individual case, and then I

wrote a generic solution. After writing the code and I've simulation at 'Matlab', I

connect to robot into.

I made an experiment for checking the algorithm by implement it on the

'TurtleBot' robot. The experiment was held at the 'CASY-Cooperative

Autonomous SYstems' lab.

Enjoy your reading.

4 | P a g e

Summary report of TurtleBot2 hardware specification

0. Introduction

1. Platforms overview

2. How each component is connected to the Robot

3. TurtleBot Index

4. Sources

0. Introduction

In the document I will give an overview on the robot components, I will

describe each component functionality and how it connected to the

robot.

At general, we have 3 main platforms: Robot, Laptop and Control

computer. This summary deals with the Robot, the Laptop and the

relationship between them.

1. Platforms overview

The Robot:

Image 1.1 " sketch 3 views"

Image 1.2 " technical specification-Robot"

5 | P a g e

The Laptop:

Image 1.3 " technical specification-Laptop"

The Sensor:

Image 1.4 " technical specification-Kinect"

2. How each component is connected to the Robot

-Place the Laptop on his shelf

-Connect the Laptop by USB cable to the Robot: one side into the front panel

and the second into the USB exit of the Laptop.

6 | P a g e

-Take the XBOX 360 cable, as shown below, and connect the orange USB into

the Kinect exit. Connect the "normal" USB into the Laptop.

-Connect the Kinect to the Robot Power: 12V, 1.5A, as pictured below:

-Pay attention that you are on operation mode

7 | P a g e

-if everything seems OK, you can turn on the Robot by turning the button at the

bottom.

-Your Robot is ready to use.

8 | P a g e

3. TurtleBot Index

We have 12 unit of "TurtleBot". The entire system called "Tribes of Israel",

where each robot has a number and a name of one of the tribes.

Each platform has 5 labels on it, R=Robot, C=Computer, K-Kinect, P-

Power, X-XBOX Cable.

4. Sources:

In this task, I used the following sources:

http://www.clearpathrobotics.com/turtlebot_2/downloads/

Packing list CLEARPATH. Kobuki quick guide

*Recommend Video: http://learn.turtlebot.com/2015/02/01/3/

Dan X1 P1 K1 C1 R1

Reuben X2 P2 K2 C2 R2

Simeon X3 P3 K3 C3 R3

Levi X4 P4 K4 C4 R4

Judah X5 P5 K5 C5 R5

Naphtali X6 P6 K6 C6 R6

Gad X7 P7 K7 C7 R7

Asher X8 P8 K8 C8 R8

Issachar X9 P9 K9 C9 R9

Zebulun X10 P10 K10 C10 R10

Joseph X11 P11 K11 C11 R11

Benjamin X12 P12 K12 C12 R12

http://www.clearpathrobotics.com/turtlebot_2/downloads/
http://learn.turtlebot.com/2015/02/01/3/

9 | P a g e

Short Review XBOX

3D Depth sensor- 3D sensors tracks the body within the "play space"

RGB Camera- 640*480 pixels, help identify and takes in-game pictures and

video.

3D Depth

sensor (IR)

3D Depth

sensor

RGB Camera

10 | P a g e

Robot Operating System- R.O.S

In this document, we will discuss in R.O.S- the Robot Operating system and it

role in operating our robot- the TurtleBot2.

What is it?

R.O.S is a system for controlling robotic components from a computer. A ROS

system is comprised of a number of independent nodes, each of which

communicates with the other nodes using a publish messaging model. For

example, a particular sensor’s driver might be implemented as a node, which

publishes sensor data in a stream of messages. These messages could be

consumed by any number of other nodes, including filters, loggers, and higher-

level systems such as guidance, etc.

The concept: we can simply tell Node 1 to send messages to Node 2. As shown:

The nodes publishing and subscribing.

This link is very helpful for the beginning:

http://www.clearpathrobotics.com/blog/how-to-guide-ros-101/

http://www.clearpathrobotics.com/blog/how-to-guide-ros-101/

11 | P a g e

 Quick Guide to initialize the robot

We have to define a "Master" and "workstation". The "Master" will be the Acer

Laptop which we put on the "TurtleBot" and the workstation will be the

1. Turn on the Laptop. (Acer)

2. Open a new terminal window by pressing "Ctrl+Alt+t"

3. Discover your I.P by write "ifconfig". The I.P will show up at the line which

is start with the words "inet addr".

4. Define as a master by the command: echo export

ROS_MASTER_URI=http://IP_OF_TURTLEBOT:11311 >> ~/.bashrc . where

IP_OF_TURTLEBOT is the I.P from step 3.

5. Define the "Master" host-name by the command, at the same terminal

window "echo export ROS_HOSTNAME=IP_OF_TURTLEBOT >> ~/.bashrc"

6. Now, open a new terminal window and operate ROS by the command:

"roscore"

7. Check the system is working properly and no fault in one of the

components. Open a new terminal window and give the command:

"roslaunch turtlebot_bringup minimal.launch"

At this step you can play with the keyboards key for controlling the

'TurtleBot'

8. We have to establish a network between the Acer laptop and the

workstation. After we make sure there is available Wi-Fi in the room we

have to create a new Wi-Fi Network between the two. At first, open the

window "Create New Wi-Fi Network" by pressing on the connection icon

at the top menu. A new window will show up:

At the "Network name" insert Any name you want (and remember it). I

recommend on "TurtleBot".

12 | P a g e

9. Now we have the new network as one of the option to connect on

among the other. From now and go on we move to deal with the

workstation. We need to find the I.P address, at the same way we did in

steps 1-3.

10. Define the Master on the workstation (for they know to recognize each

other). As written in step 4, give a command: echo export

ROS_MASTER_URI=http://IP_OF_TURTLEBOT:11311 >> ~/.bashrc . where

IP_OF_TURTLEBOT is the I.P from step 3.

11. Define the workstation as an "host": echo export

ROS_HOSTNAME=IP_OF_WORKSTATION >> ~/.bashrc

12. "Connection Testing". For checking if we actually succeed we can give a

command on the workstation: rostopic pub -r10 /hello std_msgs/String

"hello". Now on the Laptop we give the command rostopic echo /hello. If

the word "hello" show over and over than we are fine. If not, return the steps-

there is a problem. To stop, you can press "Ctrl+c".

13 | P a g e

Controlling the robot by using 'Matlab'

Using "Robotic System Toolbox" package make it easier to control the robot.

There are 3 common operators:

-Blank Message

-Publish

-Subscribe

 we can build the following "blocks diagram". We use the "Subscribe" and we

can get out data about the robot: velocity, place, rotation angel and more.

14 | P a g e

For example, if we want to get a graph of the Yaw angle ("psi") we can import

the data form the robot into the work space on 'Matlab', as shown above. The

graph we get:

"Yaw (rad) by time (sec)"

15 | P a g e

Trajectory panning- Vehicle Routing Problem

Goal:

Find the optimal time& distance solution for the Vehicle Routing Problem.

Meaning- minimizing the total route cost function by finding the shortest path

and minimum time.

The V.R.P is a combinatorial optimization problem which asks "what is the

optimal set of routes for a fleet of vehicles to traverse in order to deliver for a

given set of customers", in our case we have only 1 vehicle, "TurtleBot" Robot

and N customers. We will see first a simple case for N=4 which give us basic

understanding about the optimization process and then we will generalize to

every possible case without regard for the complexity of the process.

Assumption:

-One vehicle (TurtleBot)

-At least one charging station (depot)

-The vehicle must visit a set of points ("customers")

-After visiting all customers return to a depot

-The vehicle allowed returning to a depot during a tour and must do it after 2

visits for "refuel energy".

The mission:

1. Visits each customer once

2. Minimizes the total distance travelled

3. Minimizes the total time used

16 | P a g e

a, 4 stations Algorithm

The idea is to optimize the path between 4 stations. Visit at the 'docking' station

after 2 visits (for charging, "refuel energy").

Define docking station at  0,0O

Get 4 coordinates and insert into 2 4matrix (Point_val):

   
    
   

1 3 2 4
Point value

3 2 1 4

i

i

x

y

Calculate the distance of each station relative to docking station (distance):

      2 2distance distance 10 13 5 32
T

i ii x y

Let r* will be the sum of distance for each station relative to docking station

       
*r = distance 10 13 5 32 14.66

i

i

Building a matrix of all distances between the stations:

     
     
       
     
    
     

11 12 13 14 12 13 14 12 13 14

21 22 23 24 23 24 12 23 24

31 32 33 34 34 13 23 34

41 42 43 44 14 24 34

0 0

0 0 0

0 0 0 0

0 0 0 0 0

GeneralStructure Calculation

a a a a a a a a a a

a a a a a a a a a
a

a a a a a a a a

a a a a a a a


final structure

      
2

2

ij i j i ja x x y y

 
 
 
 
 
 

0 2.2361 2.2361 3.1623

2.2361 0 1.4142 2.2361

2.2361 1.4142 0 3.6056

3.1623 2.2361 3.6056 0

r symetric

Define min distance (d_min) =10000

define z=time that min distance found, initial at z=1

Loop for finding the minimum distance:

running all over the matrix and check which combination give the minimum

distance. When find, save the order and the total distance. One step in the loop

is shown:

17 | P a g e

            

 

 

 

 

 

          

 





 



 



min

min

tan min

min

min

:

*

1

5

jk lm

dis ce

if j k j l j m k l k m l m

sum r r

if sum d

d sum

total d r

order j k l m

z z

end

end

final d order

d

For example let run on the situation when    1, 2, 3, 4j k l m

 

   

   

   

    

 

   

 

 

    



 



12 34

min

min min

tan mi

min

n tan

min

2.2361 3.6056 5.8417

5.8417 10000

: : 5.8417

* 5.8417 14.66 20.5017

1 2 3 4

1

5.8417

5

dis ce dis ce

sum r r

if sum d

d sum d

total d r total

order j k l m

z z

end

end

final d order

d

Calculate permutations and print each of them with the total minimum energy

(distance).

18 | P a g e

Matlab Code

clc

close all

clear all

i = 4; %Number of stations

docking = [0,0]; %Coordinate of initial position

Point_val = [1 3 2 4; 3 2 1 4]; %First row for the values of X and second row

for the the values of Y

vector_of_letters = cellstr(char('A', 'B' ,'C' ,'D')); %Station names

vector_of_letters = vector_of_letters';%Rotate

for j=1:1:i

 distance(j) = sqrt((Point_val(1,j))^2 + (Point_val(2,j))^2); %Calculating the

distance of each station relative to docking station

 for k=(j+1):1:i

 r(j,k) = sqrt((Point_val(1,j)-Point_val(1,k))^2 +(Point_val(2,j)-

Point_val(2,k))^2);

 end

end

r_star = sum(distance); %Sum of the distances of all stations relative to

the docking station

r(i,:) = zeros;%Adding more row

z = 1;%Initial conditions

r_sym = r+triu(r,1)';% Makes the matrix symmetry

d_min = 1000000;%Initial conditions

%% The next section refers to the situation where there are 4 stations

for j=1:1:i

 for k=1:1:i

 for l=1:1:i

 for m=1:1:i

 if ((j~=k)&&(j~=l)&&(j~=m)&&(k~=l)&&(k~=m)&&(l~=m))%Ensures

that the stations are not the same and we visit them all

 vector = [r_sym(j,k) r_sym(l,m)];

 d_compere = sum(vector);

 if d_compere<=d_min; % A comparison between the current value

and the minimum value

 d_min = d_compere;% Placing the minimum value

19 | P a g e

 total_distance = d_min + r_star; %Total distance including the

distances to docking station

 order(z,:) = [j k l m d_min]; % Saving order in which visiting at

stations and the min distance

 z = z+1;

 end

 end

 end

 end

 end

end

p = 1;

final_d_min = order(z-1,5); %the min distance

for j=1:1:z-1

 if order(j,5)==final_d_min

 result(p,:) = order(j,:);

 p = p+1;%Number of permutations

 end

end

fprintf('There are %0.d of optimal trajectory between 4 stations \n',p-1)

for j=1:1:p-1

 fprintf('O%s%sO%s%sO

\n',vector_of_letters{result(j,1)},vector_of_letters{result(j,2)},vector_of_letters{result(

j,3)},vector_of_letters{result(j,4)})

end

fprintf('The total energy is %0.2f',final_d_min)

20 | P a g e

21 | P a g e

Algorithm b , N stations

Here we let the user choose for number of station "N". For each station we have

to enter the x,y coordinates. After we have all these data we send it to VRP

function which returns us the best order of the station for optimal route and the

distance we have to do (the "energy").

-main-

By given 'N' (num. of station) and 'Point_val' (coordinates):



   
    
   

1 2

1 2 2

Point value
i N

i N N

x x x x

y y y y

Running function 'VRP' (return the optimal route and the energy)

-VRP function-

Define docking station at  0,0O

Calculate the distance of each station relative to docking station (distance):

      2 2

1 2distance distancei i Ni x y d d d

Building a matrix of all distances between the stations:

     
     
       
     
     
     

11 12 1 12 1 12 1

21 22 2 2 12 2

1 2 1 2

0 0

0 0 0

0 0 0 0

0 0 0 0 0

N N N

N N N

N N NN N N

GeneralStructure Calculation final structure

a a a a a a a

a a a a a a
a

a a a a a

       
2

2

ij i j i ja x x y y

Define final vector and initialize by '-1' values.

Define min distance vector (d_min_vector) =0

Loop for finding the minimum distance:

Running over all the values at upper triangular matrix for finding combinations

which give the minimum distance. When find, save the next station who gave

the minimum distance (as show below) into station_min.

22 | P a g e

At the figure we can see the dynamic process:

we start with station j='1' and run all over the other N-1 station for finding the

shortest sub path. At the figure below we can see half of the process "the

searching". Each station search for the next station i to move. The next step is

checking the shortest path we get when we choose station k. We can describe

the distance with the formula:      O j k O j jk kd d d d .When we go from

zero. Visit on two stations and return to the zero point

When we found the optimal sub path (as shown at the next figure: j=1 and k=3)

we save it in a new vector (final) at place j we put k and in place k we put j

instead the -1 value. This presentation was intended so that you can to erase the

stations who "we handled" of them.

3

2
5

4

1

6

N

0

3

2
5

4

1

6

N

0

23 | P a g e

So the vector final is now:  


    
1

1, 1,3, 1, 1,..., 1
N

final . We save the distance

into d_min_vec(j)=d_min and a sub path is getting the form:

Now the "map" is looking:

And the process continues the same until it finish handle all the station.

There is a case when we have odd number of station and we have to match the

last station a partner. The solution is by match it for himself. The searching for

this station is by passing all over vector final and find when we have a cell with '-

1'. When it found we place final(j)=j.

So at the end of the section we have


 
  
 1 4 72 3 5 6 1 7

4,7,6,1,5,3,2 7final N .

3

1

0

2
5

4

6

N

0

24 | P a g e

Now we want to arrange it in a logical vector. So we define a new vector order

which initialize with zeros. It put at place j the value from final (j) and in place

i=final (j) place '-1'.



 
     
 1 4 6 72 3 5 1 7

4,7,6, 1,5, 1, 1 , 7order N

We can see that if final (i)=i then order(i)=i . (Tip case for odd num. of stations).

The next step is "to prepare", it means we have to consider a constraint which

states that after 2 visits to the stations, we must return to the docking station.

We build output=
 

 
 
 

1 2 3 4

1 2 3 4 2* 2

0 0 0

0 0 0

T

N

x x x x

y y y y .

We can see that output get the x and y values only if order has a valid value. The

places it puts the values are divide into groups of two double cells:

The condition for placing  
T

i ix y is as shown:

 

 

   

   

  

   

   



 













 

 

2 0

1,

0

,1 Point val 1,

,2 Poi

_

_nt val 1,

,1 Point val 1,

,2 Point val 1,

1

1

_

_

k startat

for j j N

if order j

output k j

output k j

if order j j

output k j

output k j end

k k

end

k k

end

end

25 | P a g e

There is the tip case: odd number of station. In this case we have to check if

final(i)=i. if so, the variable last=i.

For calculation the optimal distance (the minimum energy path) we have to sum

all the minimum distances (d_min_vec) which we are already found at the first

section (when we built up final vector). If the N is odd then we have to put in

d_min_vec(last)=2*distance(last), so at the end of the route, the vehicle will be

straight to him and back.

Example:

 
  
 

3 7 2 1 6 7 2
Point_val 7

1 5 7 3 9 1 4
N

0 0

3 1

1 3

0 0

7 5

2 4

0 0

2 7

7 1

0 0

6 9

0 0

The minimum energy is 92.9104

26 | P a g e

%%main of VRP

clc

close all

clear all

N = 7; %Number of stations

Point_val = [3 7 2 1 6 7 2; 1 5 7 3 9 1 4]; %1st row X values 2st row

Y values

[out,opt_dist] = VRP(Point_val,N);

function [output, opt_dist] = VRP(Point_val,N)

docking = [0,0]; %Coordinate of initial position

for j=1:1:N

 distance(j) = sqrt((Point_val(1,j))^2 + (Point_val(2,j))^2

); %Calculating the distance of each station relative to docking

station

 for k=(j+1):1:N

 r(j,k) = sqrt((Point_val(1,j)-Point_val(1,k))^2

+(Point_val(2,j)-Point_val(2,k))^2); %building Matrix of distance

between stations

 end

end

r_star = sum(distance); %Sum of the distances of all

stations relative to the docking station

r(N,:) = zeros;%Adding more row

z = 1;%Initial conditions

r_sym = r+triu(r,1)';% Makes the matrix symmetry

for j=1:1:N %%initializion of final vector

 final(j)=-1;

end

d_min_vec(N) = zeros; %%initializion of minimun distance vector

%%calculate the optimal path

for j=1:1:N

 d_min = 10000; % max value

 for k=1:1:N

 if ((j<k) && (final(k) < 0))%only values on upper

triangular matrix

 temp = (distance(j)+r_sym(j,k)+distance(k)); %calculate

partial path

 if (temp < d_min)

 d_min= temp;

 station_min = k;%saving the optimal next station

 end

 end

 end

 if (d_min<10000) %%taking the real min value

 d_min_vec(j)=d_min; %%saving min distance for optimal path

 end

 if ((final(j)<0) && (final(station_min) < 0))

 final(station_min) = j; %symetry

27 | P a g e

 final(j)= station_min; %here we place the next station to

go

 end

end

%taking the last final and make it its own value. (solving tip case).

for j=1:1:N

 if (final(j)==-1)

 final(j)=j;

 end

end

%initialize vector of station order for making Comparison

for j=1:1:N

 order(j)=0;

end

for j=1:1:N

 if (order(j)==0)

 order(j) = final(j);

 if (final(j)~=j)

 order(final(j))=-1;

 end

 end

end

output(2*N,2)= zeros;

k=2; %start from docking station

for j=1:1:N

 if (order(j)>0) %%valid point

 output(k,1)=Point_val(1,j);

 output(k,2)=Point_val(2,j);

 if (order(j)~=j)

 output(k+1,1)=Point_val(1,order(j));

 output(k+1,2)=Point_val(2,order(j));

 k=k+2;

 end

 k=k+1;

 end

end

%finding the last station when we have odd number of N stations

for i=1:1:N

 if (final(i)==i)

 last=i;

 end

 end

%calculate total optimal distance

d_min_vec(last)=2*distance(last);

opt_dist=0;

for i=1:1:N

 opt_dist=opt_dist+d_min_vec(i);

end

end

28 | P a g e

Experiment by using 'TurtleBot' robot

The experiment took a place at the 'CASY-Cooperative Autonomous SYstems'

lab. Date of experiment: Wednesday 11.11.2015

The vehicle 'TurtleBot' make its route by passing all over the points, according

the values from the vector output.

In the link you can watch the video of the experiment:

https://www.youtube.com/watch?v=IIHwWoQK_1g

Note: turn on the subtitles for description.

x

y

Docking Station

https://www.youtube.com/watch?v=IIHwWoQK_1g

29 | P a g e

The area we chose for making the experiment was a square 3*3 meters. We

normalized the data (the coordinates) by multiply by factor 0.3, so the values

are:

0 0 0 0

1 3 1 1 3 1

2 1 3 2 1 3

0 0 0 0

3 7 5 3 7 5

4 2 4 4 2 4

0 0 0 0

5 2 7 5 2 7

6 7 1 6 7 1

0 0 0 0

7 6 9 7 6 9

0 0 0 0

0 0

station x y station x y

docking docking

docking docking

docking docking

docking docking

docking docking

end

 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

0 0

1 0.9 0.3

2 0.3 0.9

0 0

3 2.1 1.5

4 0.6 1.2
0.3

0 0

5 0.6 2.1

6 2.1 0.3

0 0

7 1.8 2.7

0 0

0 0 0 0

station x y

docking

docking

docking

docking

docking

end end

   
   
   
   
   
   
   
   
   
   
    
   
   
   
   
  
  
  
  
  
  
   








At the next page there is a Simulink blocks diagram which describes the

commands for the TurtleBot. By using a non-linear controller we can examine

the result of the VRP algorithm.

30 | P a g e

31 | P a g e

Plots-the curves that the robot makes, "step by step":

32 | P a g e

33 | P a g e

34 | P a g e

35 | P a g e

36 | P a g e

The last plot is the route from docking station to 7 and back to the docking

station.

37 | P a g e

'Matlab' Code:
rosshutdown

clear

close all

clc

rosinit ('10.42.0.26')

%%main of VRP-Experiment

N = 7; %Number of stations

Point_val = 0.3*[3 7 2 1 6 7 2; 1 5 7 3 9 1 4]; %1st row X values 2st

row Y values

[out,opt_dist] = VRP(Point_val,N);

%Reset odometry - Ruben

odomresetpub = rospublisher('/mobile_base/commands/reset_odometry');

% Reset odometry

odomresetmsg = rosmessage(rostype.std_msgs_Empty);

send(odomresetpub,odomresetmsg)

soundpub = rospublisher('/mobile_base/commands/sound');

soundmsg = rosmessage(rostype.kobuki_msgs_Sound);

soundmsg.Value = 5;% Any number 0-6

out=out(2:end,:);

w=1;

i=1;

figure(1)

scatter(out(:,1),out(:,2),'o')

ylim([-0.5 3])

xlim([-1 3])

grid on

title('Curves of the robot trajectory')

xlabel('x [m]')

ylabel('y [m]')

while w>0

if i>2*N

 w=-1;

 break

end

point=out(i,:);

sim ('go_to_points');

if i>2*N

 w=-1;

end

figure(1)

hold all

plot(x_robot,y_robot)

i=i+1;

 send(soundpub,soundmsg);

end

